tg-me.com/ds_interview_lib/639
Last Update:
Какие вы знаете автоматические способы обнаружения выбросов в датасете?
Вот несколько подходов:
▪️Isolation forest
Метод базируется на алгоритме случайного леса. Его основная идея заключается в том, что выбросы легче изолировать от остальных данных, чем нормальные объекты. В процессе работы алгоритм строит деревья, случайно разделяя данные. Выбросы, как правило, изолируются за меньшее число шагов. В результате каждому объекту присваивается скор от 0 до 1, где значения, близкие к 1, указывают на возможные выбросы, а значения, близкие к 0, означают нормальные данные.
▪️Local Outlier Factor (LOF)
Этот метод оценивает, насколько плотно объект окружен своими соседями по сравнению с плотностью соседей вокруг других объектов. Если плотность точки значительно меньше, чем у её соседей, то точка считается выбросом.
▪️Расстояние Махаланобиса
Этот метод измеряет расстояние между точкой и средним значением распределения, принимая во внимание ковариацию данных. Точки, находящиеся далеко от центра распределения, но с учётом их корреляции с другими признаками, могут быть идентифицированы как выбросы.
#машинное_обучение
#данные
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/639